
TDA Progress Report 42-88

N87-17953

October- December 1986

Fixed Lag Smoothers for Carrier Phase and

Frequency Tracking

R. Kumar I and W. J. Hurd

Communications Systems Research Section

The article presents the application of fixed lag smoothing algorithms to the problem

of estimation of the phase and frequency of a sinusoidal carrier received in the presence

of process noise and additive observation noise. A suboptimal structure consists of a

phase-locked loop {PLL J followed by a post loop correction to the phase and frequency

estimates. When the PLL is operating under a high signal-to-noise ratio, the phase detector

is approximately linear, and the smoother equations then correspond to the optimal

linear equations for an equivalent linear signal model. The performance of such a smoother

can be predicted by linear filtering theory. However, if the PLL is operating near the

threshoM region of the signal to noise ratio, the phase detector cannot be assumed to be

linear. Then the actual performance of the smoother can significantly differ from that

predicted by linear theory. In the article we present both the theoretical and simulated

performance of such smoothers derived on the basis of various models for the phase and

frequency processes.

I. Introduction

The derivation of optimum receivers through modern esti-

mation techniques has been proposed by various researchers

(see Refs. 1-12 and their references). In Refs. 4 and 5 opti-

mum zero lag receivers have been derived on the basis of linear

Kalman filtering theory (Ref. 6) for linear measurement

schemes. The nonlinear measurement situations which are of

interest here have been studied in Ref. 7, wherein, on the basis

of nonlinear filters of Ref. 8, suboptimal nonlinear zero lag

receivers have been derived for the demodulation of angle
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modulated signals. In Ref. 9 the techniques of Refs. 7 and 8

have been extended to design suboptimum fixed lag smoothers

for phase estimation. The solution of the optimum nonlinear

filtering/smoothing problem is, of course, intractable. Whether

derived from linear or nonlinear theory, the smoother struc-

ture consists of a phase-locked loop (PLL) followed by a post

loop correction to the phase and frequency estimates.

In this article we study the application of linear and non-

linear smoothers to the phase and frequency estimation of a

sinusoid. We show that for this case, the suboptimum non-

linear smoother derived from Refs. 7-9 is not substantially

different from the optimum linear smoother equations for an

appropriate linearized measurement model. In addition, simu-
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lations show that the difference in performance of the non-

linear and linear smoother is not significant, even when the

phase detector is operating highly nonlincarly. Evcn though

the linear and nonlinear systems pertbrm similarly, linear

theory is inadequate to predict the performance when the

phase detector is highly nonlinear.

When compared to the case of linear phase detector, the

performance of the smoother for the case of nonlinear phase

detector can be substantially different. The difference can be

much more pronounced when process noise is present, com-

pared to the case when only observation noise is present. The
simulation examples indicate that in the absence of process

noise, although there is a significant performance degradation

due to nonlinearity (about 1 dB when operating in the loop

SNR of about 5 dB), there is no threshold observed in the

smoothing error covariance in this region. In contrast to this,

there is a pronounced threshold in the smoother performance

when the process noise is present and the inverse of filter

phase error variance is below 7.5 dB.

We also evaluate the smoother performance when the pro-
cess noise is reduced in magnitude. That is, the smoother/

filter solutions are based on a relatively high process noise,

but in the simulation the actual variance of the process noise

used is lower or zero. This is of interest because, in many

practical applications, the process noise statistics are not pre-
cisely known, and are therefore deliberately over-estimated.

e[_-(k)] = 0 e[w(k)] -- 0

EI_-2(k)] = R ; £[w(k)wr(k)l = Q;L_I_(k)wO)] = 0

As shown in Refs. 9 and 10, when 2wct and higher order
harmonic terms are ignored, the smoother equations reduce to

the following:

_o(k + l) = rP _o(k/k) + Ko(k + 1) r/(k + 1)

_i(k + l/k + l) = _i-1 (k/k)+ Ki(k + 1)7?(k+l)

_?(k + l) = x/_y(k + I) Cos(®(k + 1)) (3)

_)(k + 1) = ¢Octk+l +{3£'_(k + l/k)

xi(k ) = x(k - i), i = 0 ..... L

where "_i(k/k) represents the filtered estimate ofxi(k ) or the
smoothed estimate _(k - i/k). The gain vectors K i and the

cross covariance matrices Pio(k/]) a= E_'Z(k - i/i)_r(k/])}

with'_(k/j) a=x(k) - "_(k/]) are given by

Ki(k + 1) = A {3Pio(k + 1/k) _ S-X(k + 1),

0 _<i < L (4)

II. Signal Model and Smoother Equations

In this section, we present a suboptimal nonlinear smoother,

and show that it is very similar to the linear solution. We then

present an implementation of the linear solution. We consider

the problem of estimating the phase process O(k) from the
sampled version of the received carrier signal y (k), i.e.,

y(k) = A v_sin (wct k + O(k)) +-_(k) (1)

where t k is the kth sampling time, w c is the known carrier
frequency and _(k) the observation noise is the sampled ver-

sion of a narrow band zero mean white Gaussian noise process

v(t). Furthermore, the phase process O(k) is modeled as

O(k)

x(k + t)

= [3_'x(k), _' = [1 0... 0]

= • x(k) + w(k)

(2)

In Eq. (2),/3 is the phase constant, x(k) is the state vector
of dimension n, ¢ is an (n × n) matrix and w(k) is zero mean

white Gaussian noise process independent of (V(k)} . Thus

P.o(k + 1/k + l) = Pio(k + 1/k)

- P_o(k + 1/k) (,4 {3_) (.4 {39.)'

X Poo(k + 1/k)S -1 (k+ 1)

P.o(k + 1/k) = Pi_l,o(k/k) ¢', O<i<L

1 2) -1s-i(k+ 1) = A -2 p¢--_-p¢

×
It I _(k+ 2 "11/2"_

1)+pc]

(Sa)

(5b)

pC = 32Poo 1'1 , R(k) = R(k)/A 2 (6)

The smoother error covariance matrix Pii(k + 1/k + 1) is
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_;(k+ 1/k +1) -- _;(k + l/k) -e.0(k + l/k) (,4 t_2)

X s-l(k + 1) (A 131d)'Pio(k + 1/k)

Pii(k + 1/k) = Pi_l,i_l(k/k) (7)

A. Rapprochement With Linear Theory

Representing the bandpass additive noise _'(k) in terms of

its baseband quadrature components _.(k) and v-q(k), ignoring
the 2c0¢ term, then for small estimation error _'(k + I/k),

_(k+l) = /3A _'_'(k+ l/k)+ _2 g.(k+ l) (8)

The _(k + 1) given by Eq. (8) above is precisely the one-step

ahead prediction error (innovation) for the following linear
model

1 _

y(k+ 1) = [3A £'x(k+ l) +----_- v/(k + 1)
Vz

(9)

It is easily verified that Eqs. (3-7) reduce to the linear

optimal smoother equations for the model (Eqs. [2, 9]), under

the assumption of small pc.

B. Smoother Implementation

If the various gains are replaced by their respective steady

state values, the smoother consists of a digital phase-locked

loop followed by a post-loop correction to the filtered esti-

mates. As shown in Ref. 10 this post-loop correction can be

equivalently implemented by a finite impulse response (FIR)

filter whose output e(k + 1) is related to its input r/(k + 1), as
in Fig. 1, by

e(k+ 1) = r/(k+ 1)+7 -1 r_(k)+...+7 -(L-I) r_(k + 2-L)

(10)

The scalar 7 in Eq. (10) can be expressed in terms of steady
state filter error covariance matrix, etc., as shown in Ref. 10.

III. Linear Filter/Smoother: Derivation of
Transfer Functions and Performance

Expressions

In Ref. 10, three specific cases of model (2) are considered.

These correspond to the dimension n of the state vector x

in Eq. (2) equal to 1, 2, and 3. The resulting filter/smoother

configurations are termed first order, second order and third

order respectively. By replacing various gains and matrices by

their steady-state values in Eqs. (3-7), these difference equa-

tions are replaced by algebraic equations and may be solved

explicitly for the steady state values of the filter error covari-

ance matrix PF, the prediction error covariance Pp, smoother
error covariance Ps, etc. Substitutions of these expressions in
Eq. (4) and the linearized version of Eq. (6) results in the

steady-state expressions for the filter and smoother gains.

Finally, from Eq. (3) the filter and smoother transfer func-
tions and various other transfer functions of interest are

derived. These expressions are very useful in evaluating the

error perlbrmance of the filter/smoother when the design

value of the process noise covariance matrix is different than

its actual value. In such cases, the expressions derived for the

filter/smoother covariance matrices do not reflect the actual

performance. The various error variances are instead evaluated

using frequency domain techniques from the derived transfer

functions. One may refer to Ref. 10 for the details of such
derivations.

The above derivations are based on the assumption of

linear phase detector. The performance predicted on the basis

of these expressions is compared with simulations in the next
section. As would be observed there, under the assumption of

linear phase detector, the simulation results are in close con-

formity with those predicted from theory.

IV. Simulation Results

In the following the simulation results obtained for the

second-order case are presented in some detail. We discuss

the performance of the optimal linear filter and smoother

both with linear phase detectors first. Then we evaluate

the smoother performance versus delay and lastly discuss the

smoother performance with the nonlinear phase detector. To

be concrete we use the following often used model for the Q
matrix

T2/3 T/121
Q = 02 T 2

a

LTI2

(11)

One advantage of using the above Q is that the performance of

the filter/smoother is then a function of only three parameters

viz, oa, o_-, and T, where ov-2 denotes the noise variance of
vi(k)/_/_ in the baseband model, Eq. (9). We present the

smoother/filter performance in terms of the.phase estimation
error. One may refer to Ref. 10 for the corresponding results

for the frequency estimation error.

First we present the phase tracking performance from

both analysis and simulations for the case when the phase
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detector nonlinearity is ignored. Both the optimal filter and

smoother performance are analyzed in the following.

1. Optimal filter and smoother with large delay. Here we

present the performance of the optimal filter and smoother

(assuming linear signal model) so as to relate these parameters

to the two-sided normalized loop noise bandwidth 2Bp, a

commonly used parameter in the design of phase locked loops.

We consider the smoother with large delay. In terms of the

closed-loop transfer function matrix GF(Z ) (Ref. 10), the

parameter 2Bp is given by,

dz2Bp - T 02)

where GF, p represents the first component of the transfer

function matrix GF(Z), and P is some appropriate contour of

integration. Figure 2 plots Bp as calculated from Eq. (12) as

a function of (On2/02) for three different values of the sam-

piing period T viz. 0.01, 0.1 and 1 s. From these graphs it is

readily seen that approximately,

0.11

2Bp _ 0.67 (Oa21O_) T, T = 1 s, Oa2/O _ _< 10

0.226

2Bp _ 1.01 (o2/o2) T, T = 0.1s

2Bp -_ 1.05 (Oa2/av2 } °'2ST, T : 0.01s

03)

The last relation may be taken to be the asymptotic relation

for (2Bp/T) as T ÷ 0. Figure 2 also includes the normalized

loop noise bandwidth of the smoother as calculated from

Eq. (12) with GF,p, replaced by the first component of the

smoother transfer function matrix. Denoted by 2Bp, s this

normalized bandwidth is given by

' 2 2' 0.234

2Bp, s -_ 0.28 (o I%) T, T = 0.1 s (14a)

Comparison with the filter bandwidth of Eq. (13) yields

-0.008
3.6 '-'[o2/o-Z/ T = 0.1s

Bp/Bp,s (14b)
_ a - _/

This indicates that the improvement achievable by using

second order smoothing compared to a second order filter is

approximately a factor of 3 • 6 or 5.5 dB.

The real two-sided noise bandwidth of the filter 2.Bz, p =

2B L/T and is equal to the normalized phase error variance

PF(1,1)/ (av2T)when the actual proccss variance u 2a,s = O.

Similarly

2Bzp,s = 2Bp,s/r = Ps(1,1)/ (o__ T)

In Fig. 3 we plot the normalized phase error variance for

both the filter and smoother as obtained from the recursive

solutions of Eqs. (4-7). From the figure approximate expres-

sions for these terms may be written as,

PF(1,1)/o_-T _- 0.75 (Ua2/or2 ) o.o8, T =ls, °a 2 /o2 _< 10

0.22

_- 1.32 ,a ",(O2/OV 2/ ' T= 0.1 S

0.2 5

1.4 (Oa2/Ov2) , T=0.01s (15a)

0.237

PS(1,1)/(%-2 T) = 0.365 o2/% 2 (15b)

Comparing Eqs. (15) and (13,14) one observes that pro-

vided an optimum filter or smoother is used, the maximum

degradation of the phase error variance is only about 1.34

(1.25 dB) and this is almost independent of the variance %2.

2. Optimal smoother performance with linear phase de-

tector. In Fig. 4 is plotted the smoother performance evalu-

ated from simulations as a function of the smoother delay and

the ratio (0a2/o_2) used in the smoother design, assuming

linear phase detector. The dotted curves in the figure plot the

two-sided normalized loop noise bandwidth as computed from

Eq. (12). As may be inferred from the figure, the two measures

of performance are equal within the limits of statistical errors.

The minimum phase error variance (corresponding to L = -)

varies over a range of about 0.3 to 1.4 for (Oa2/Ov 2) between

1 to 100. It is also apparent from the figure the fact that

the number of delays required has an inverse relation to

_°a2/a_) to achieve asymptotic smoother performance. In

Fig. 5 is plotted the real loop noise bandwidth 2BLp, s as a

function of normalized smoother delay (LT/rF) , where rF is

the time constant of the optimal filter. As is clear from the

figure, the normalized value of delays required to achieve

asymptotic smoother performance does not depend signifi-

cantly upon (On2/o_).

Figures 6 and 7 plot the results similar to those of Figs. 4

and 5 respectively, when the actual process noise variance
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equals its design value, i.e., O2,s = 02. A comparison of these
two sets of figures shows that the phase error variance can be

at most 1.35 times more than for the case of O2a,s = 0. For

intermediate values of the noise variance, 0 < o2 s _< o2, the
ratio would be smaller.

In Fig. 8, a comparison of smoother phase error variance is

made for three different sampling periods T equal to 0.01,0.1

and 1 s respectively. As is evident from the figure, whereas the

optimum filter performance is dependent upon the sampling

period, the asymptotic smoother performance depends only

marginally on T. Thus the smoother in the most part compen-

sates for any loss of optimality due to finite sampling period.

This means that smaller T can be used with smoothing than

with filtering only.

3. Smoother performance with nonlinear phase detector.

Figures 9 and 10 present the simulation results for the case of

(Oa2 = o_) corresponding to a two-sided noise bandwidth of

the filter equal to 1Hz. For this filter design and in the absence

of the process noise (O_s = 0) , the effect of nonlinearity is

to degrade the normalized phase error variance Ps(1,1)/o2 by

at most a factor of 1.32 for o fl < 2.2 (corresponding to the
filter rms phase error of 27 ° for linear detector and 30 ° for

nonlinear phase detector).

For the case of O2a,S = oa2, the normalized phase estimation
error variance depends much more strongly on o72. For

o_2 < 1.4 (corresponding to rms phase error of 28.5 degrees

at the phase detector output), the degradation is within a

factor of 1.7 (2.3 dB). The degradation can be much higher for

larger values of o_ 2.

From these simulations it may also be inferred that for

O2a,s = O, and for the case of linear phase detector, the smoother
provides an improvement of 5.6 dB over the filter. When the

phase detector nonlinearity is taken into consideration, then

for a range of 10 log (1/oI) I> 6 dB, with o I denoting the
phase error variance of the PLL with linear phase detector, the

smoother still provides an improvement of at least 5.1 dB over

the filter. Note, however, that the filter performance can itself

be degraded by as much as 1.5 dB due to phase detector non-

linearity. Since these results correspond to a fixed value ofBL,
it may be concluded that with a smoother, the receiver can be

operated with at least 3.5 dB smaller carrier power to noise

spectral density ratio (Pc/No) when it is desired to have 0.1 or
smaller value for the phase error variance.

For the case of O_s = Oa2, it is observed that the effects of
nonlinearity are more dominant resulting in a threshold behav-

ior in the smoother phase error variance. However, for 10 log

(Pc/No Bt, ) >i 7.5 dB, the results in terms of smoother perfor-
mance are close to those for the case of O2a,S = O.

V. Conclusions

The article has presented the performance of suboptimal

filter and smoother for the phase and frequency estimation of

a sinusoidal carrier under the presence of both the process

noise and observation noise. The performance predicted on the
basis of linear estimation theory is in close conformity with

the corresponding results obtained with simulations, when the

phase detector is assumed linear. Similar results are applicable
when the phase detector nonlinearity is taken into account

and the receiver is operating under high SNR conditions.

Under these conditions the smoother improves both the phase

and frequency estimation error compared to the filter by
about 6 dB.

However, as the SNR is reduced, the corresponding im-

provement is less. Also the reduction is more when the process
noise is present than when only the observation noise is

present. Overall taking into account the degradation caused by
the nonlinearity in the performance of filter, the smoother can

permit the receiver operation at about 3.5 dB smaller carrier

power to noise spectral density ratio when it is desired to have
0.1 or smaller value of the phase error variance.
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